Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296390

RESUMO

The influence of chitosan (CS) and amphiphilic polymers (AP: pluronic F108 and polyvinylpyrrolidone (PVP)) on the photocatalytic activity of rose bengal (RB) in a model reaction of tryptophan photo-oxidation in phosphate-buffered saline (PBS) was studied. It was shown that in the presence of CS, the effective rate constant keff of tryptophan photo-oxidation catalyzed by RB in PBS solution decreases by a factor of two. This is due to the ionic interaction of the RB with the chitosan. Rose bengal in a slightly acidic environment (pH 4.5) passes into a neutral lactone form, which sharply reduces the photosensitizing properties of the dye. It was demonstrated that the introduction of AP into a solution containing RB and CS prevents direct interaction between RB and CS. This is evidenced by the presence of photocatalytic activity of the dye in the RB-AP-CS systems, as well as bathochromic shifts of the main absorption bands of the dye, and an increase in the optical density and luminescence intensity of the RB when AP is introduced into a buffer solution containing RB and chitosan. The presence of RB-CS and RB-AP interaction in aqueous and PBS media is confirmed by the increase in the degree of fluorescence anisotropy (r) of these binary systems. In an aqueous solution, the value of r for the RB-F108-CS system decreases by a factor of 3.5 (compared to the value of r for the RB-CS system), which is associated with the localization of the dye in pluronic micelles. In PBS, the fluorescence anisotropy is practically the same for all systems, which is related to the stability of the dye structure in this medium. The presence of interaction between RB and AP in aqueous solutions was confirmed by the proton NMR method. In addition, the formation of RB-F108 macromolecular complexes, which form associates during solution concentration (in particular, during evaporation), was shown by AFM. Such RB-AP-CS systems may be promising for practical application in the treatment of local foci of infections by aPDT.


Assuntos
Quitosana , Rosa Bengala , Poloxâmero , Polímeros , Micelas , Povidona , Triptofano , Prótons , Lactonas , Fosfatos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
2.
Polymers (Basel) ; 14(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145937

RESUMO

Chitosan (CS)/graphene nanocomposite films with tunable biomechanics, electroconductivity and biocompatibility using polyvinylpyrrolidone (PVP) and Pluronic F108 (Plu) as emulsion stabilizers for the purpose of conductive tissue engineering were successfully obtained. In order to obtain a composite solution, aqueous dispersions of multilayered graphene stabilized with Plu/PVP were supplied with CS at a ratio of CS to stabilizers of 2:1, respectively. Electroconductive films were obtained by the solution casting method. The electrical conductivity, mechanical properties and in vitro and in vivo biocompatibility of the resulting films were assessed in relation to the graphene concentration and stabilizer type and they were close to that of smooth muscle tissue. According to the results of the in vitro cytotoxicity analysis, the films did not release soluble cytotoxic components into the cell culture medium. The high adhesion of murine fibroblasts to the films indicated the absence of contact cytotoxicity. In subcutaneous implantation in Wistar rats, we found that stabilizers reduced the brittleness of the chitosan films and the inflammatory response.

3.
Stem Cell Res Ther ; 13(1): 317, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842689

RESUMO

One of the severe complications occurring because of the patient's intubation is tracheal stenosis. Its incidence has significantly risen because of the COVID-19 pandemic and tends only to increase. Here, we propose an alternative to the donor trachea and synthetic prostheses-the tracheal equivalent. To form it, we applied the donor trachea samples, which were decellularized, cross-linked, and treated with laser to make wells on their surface, and inoculated them with human gingiva-derived mesenchymal stromal cells. The fabricated construct was assessed in vivo using nude (immunodeficient), immunosuppressed, and normal mice and rabbits. In comparison with the matrix ones, the tracheal equivalent samples demonstrated the thinning of the capsule, the significant vessel ingrowth into surrounding tissues, and the increase in the submucosa resorption. The developed construct was shown to be highly biocompatible and efficient in trachea restoration. These results can facilitate its clinical translation and be a base to design clinical trials.


Assuntos
COVID-19 , Engenharia Tecidual , Animais , Humanos , Lasers , Camundongos , Pandemias , Coelhos , Engenharia Tecidual/métodos , Alicerces Teciduais , Traqueia
4.
Molecules ; 25(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867356

RESUMO

One of the leading trends in the modern tissue engineering is the development of new effective methods of decellularization aimed at the removal of cellular components from a donor tissue, reducing its immunogenicity and the risk of rejection. Supercritical CO2 (scCO2)-assisted processing has been proposed to improve the outcome of decellularization, reduce contamination and time costs. The resulting products can serve as personalized tools for tissue-engineering therapy of various somatic pathologies. However, the decellularization of heterogeneous 3D structures, such as the aortic root, requires optimization of the parameters, including preconditioning medium composition, the type of co-solvent, values of pressure and temperature inside the scCO2 reactor, etc. In our work, using an ovine aortic root model, we performed a comparative analysis of the effectiveness of decellularization approaches based on various combinations of these parameters. The protocols were based on the combinations of treatments in alkaline, ethanol or detergent solutions with scCO2-assisted processing at different modes. Histological analysis demonstrated favorable effects of the preconditioning in a detergent solution. Following processing in scCO2 medium provided a high decellularization degree, reduced cytotoxicity, and increased ultimate tensile strength and Young's modulus of the aortic valve leaflets, while the integrity of the extracellular matrix was preserved.


Assuntos
Valva Aórtica/ultraestrutura , Estruturas Celulares , Engenharia Tecidual/métodos , Animais , Dióxido de Carbono , Células Cultivadas , Módulo de Elasticidade , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais , Ovinos , Resistência à Tração
5.
Polymers (Basel) ; 12(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854227

RESUMO

The mimicking of the architectonics of native tissue, biodegradable non-woven fibrous mats is one of the most promising forms of scaffolding for tissue engineering. The key properties needed for their successful application in vivo, such as biodegradability, biocompatibility, morphology, mechanical properties, etc., rely on their composition and appropriate 3D structure. A multicomponent system based on biodegradable synthetic (polycaprolactone, oligo-/polylactide) and natural (chitosan, gelatin) polymers, providing the desired processing characteristics and functionality to non-woven mats fabricated via the electrospinning technique, was developed. The solid-state reactive blending of these components provided a one-step synthesis of amphiphilic graft copolymer with an ability to form stable ultra-fine dispersions in chlorinated solvents, which could be successfully used as casting solvents for the electrospinning technique. The synthesized graft copolymer was analyzed with the aim of fractional analysis, dynamic laser scattering, FTIR-spectroscopy and DSC. Casting solution characteristics, namely viscosity, surface tension, and electroconductivity, as well as electrospinning parameters, were studied and optimized. The morphology, chemical structure of the surface layer, mechanical properties and cytocompatibility were analyzed to confirm the appropriate functionality of the formed fibrous materials as scaffolds for tissue engineering.

6.
Polymers (Basel) ; 12(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156039

RESUMO

Graft copolymers of chitosan with cellulose ether have been obtained by the solid-state reactive mixing of chitin, sodium hydroxide and hydroxyethyl cellulose under shear deformation in a pilot twin-screw extruder. The structure and composition of the products were determined by elemental analysis and IR spectroscopy. The physicochemical properties of aqueous solutions of copolymers were studied as a function of the composition, and were correlated to the mechanical characteristics of the resulting films to assess the performance of new copolymers as coating materials, non-woven fibrous materials or emulsifiers for interface stabilization during the microparticle fabrication process.

7.
RSC Adv ; 9(64): 37652-37659, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542266

RESUMO

Graft-copolymers based on bioresorbable synthetic (oligo-/polylactide) and natural (chitosan and collagen/gelatin) components were synthesized through solid-state reactive co-extrusion and used for fabrication of fibrous non-woven mats via the electrospinning technique. The effect of the macromolecular features of the initial components on the copolymer characteristics was evaluated using FTIR-spectroscopy, differential scanning calorimetry and elemental analysis. Dynamic light scattering analysis showed that the copolymers have a tendency to form stable ultra-fine dispersions with a mean size of macromolecular aggregates of 150 nm within chlorinated solvents. The copolymer-containing non-woven fibrous mats were fabricated via an electrospinning procedure using chloroform as a solvent. An effect of the copolymer composition on the casting solution's viscosity, conductivity and surface tension was evaluated. Scanning electron microscopy showed that the obtained mats consist of randomly distributed fibers with a mean size of ∼5 µm and a more complex morphology than mats fabricated from neat polylactide. The proposed mechanochemical approach to obtain hybrid copolymeric compositions differs from typical liquid-phase methods in terms of high efficiency, simplicity and cleanness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...